Ildikó KOVÁCSSándor BESZÉDESSzabolcs KERTÉSZGábor VERÉBCecilia HODÚRIbolya Zita PAPPÁkos KUKOVECZZsuzsanna LÁSZLÓ2024-10-172017-03-30A. Rahimpour, S. S. Madaeni, A.H. Taheri, Y. Moghaddam, Journal of Membrane Science, 2008, 313, 158. M.L. Luo, J.Q. Zhao, W. Tang, C.S. Pu, Applied Surface Science, 2005, 249, 76. Y. Mansourpanah, S.S. Madaeni, A. Rahimpour, A. Farhadian, A.H. Taheri, Journal of Membrane Science, 2009, 330, 297. A.H. Moghaddam, J. Shayegan, J. Sargolzaei, Journal of the Taiwan Institute of Chemical Engineers, 2016, 62, 150. V. Vatanpour, S.S. Maadaeni, R.A. Khataee, E. Salehi, S. Zinadini, A.H. Monfared, Desalination, 2012, 292, 19. A. Razmjou, J. Mansouri, V. Chen, Journal of Membrane Science, 2011, 378 (1-2), 73. S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, H. Wang, Journal of Membrane Science, 2014, 472, 167. J.F. Li, Z.L. Xu, H. Yang, L.Y. Yu, M. Liu, Applied Surface Science, 2009, 255, 4725. K.H. Choo, C. H. Lee, Journal of Colloidal and Interface Science, 2000, 226, 367. G. Belfort, R.H. Davis, A. Zydney, Journal of Membrane Science, 1994, 96, 1. Cs. Földváry, L. Wojnárovits, Radiation Physics and Chemistry, 2007, 76, 1485. G. Veréb, Z. Ambrus, Zs. Pap, Á. Kmetykó, A. Dombi, V. Danciu, A. Cheesman, K. Mogyorósi, Applied Catalysis A: General, 2012, 417–418, 26. K. Mogyorósi, N. Balázs, D.F. Srankó, E. Tombácz, I. Dékány, A. Oszkó, P. Sipos, A. Dombi, Applied Catalysis B: Environmental, 2010, 96, 577. Z.X. Low, Z. Wang, S. Leong, A. Razmjou, L.F. Dumée, X. Zhang, H. Wang, Industrial & Engineering Chemistry Research, 2015, 54, 11188. S.S. Chin, K. Chiang, A.G. Fane, Journal of Membrane Science, 2016, 275, 202. N.S. Allen, M. Edge, “Fundamentals of Polymer Degradation and Stabilization”, Elsevier Applied Science, London, 1992, chapter 1. H. Bai, Z. Liu, D.D. Sun, Chemical Communications, 2010, 46, 6542. S. Kertész, Z. László, E. Forgács, G. Szabó, C. Hodúr, Desalination and Water Treatment, 2012, 35, 195.1224-7154(online): 2065-9520http://dspace.chem.ubbcluj.ro:4000/handle/20.500.14637/55STUDIA UBB CHEMIA, LXII, 1, 2017 (p. 249-259), DOI:10.24193/subbchem.2017.1.22 Ildikó KOVÁCS Department of Process Engineering, Faculty of Engineering, University of Szeged, Hungary Sándor BESZÉDES Department of Process Engineering, Faculty of Engineering, University of Szeged, Hungary, beszedes@mk.u-szeged.hu https://orcid.org/0000-0003-2301-765X Szabolcs KERTÉSZ Department of Process Engineering, Faculty of Engineering, University of Szeged, Hungary, kertesz@mk.u-szeged.hu https://orcid.org/0000-0001-9760-3008 Gábor VERÉB Department of Process Engineering, Faculty of Engineering, University of Szeged, Hungary, uh.degezs-u.km@gberev.hu https://orcid.org/0000-0001-9642-1851 Cecilia HODÚR Department of Process Engineering, Faculty of Engineering, University of Szeged, Hungary, hodur@mk.u-szeged.hu https://orcid.org/0000-0002-2028-6304 Ibolya Zita PAPP Department of Applied and Environmental Chemistry, University of Szeged, Hungary, pappibolyazita@gmail.com https://orcid.org/0000-0001-9202-9035 Ákos KUKOVECZ Department of Applied and Environmental Chemistry, University of Szeged; MTA-SZTE "Lendület" Porous Nanocomposites Research Group, Szeged, Hungary, kakos@chem.u-szeged.hu https://orcid.org/0000-0003-0716-9557 Zsuzsanna LÁSZLÓ Department of Process Engineering, Faculty of Engineering, University of Szeged, Hungary *Corresponding author: zsizsu@mk.u-szeged.hu https://orcid.org/0000-0001-8130-7482In this study, synthesized TiO₂ nanorods and commercial Aeroxide P25 TiO₂ nanoparticles were deposited on polyethersulfone (PES) membrane surfaces to compare their photocatalytic activity and effects on membrane surface and filtration properties. The catalysts were deposited on the membrane surface by physical deposition. The effect of the TiO₂ amount on the stability of the catalyst layer and its effect on membrane resistance in presence and absence of UV irradiation were investigated. 1.2 mg/cm² catalyst coverage proved to be a minimal appropriate coverage to prevent membrane damage during UV irradiation. The catalysts formed hydrophilic layers on the surface, and in case of both catalyst the surface free energy increased compared to the neat membrane. The photocatalytic activity and retention of the modified membranes were tested spectrophotometrically by using Acid Red1, azo dye.enmembrane filtrationTiO₂ coated membranesphotocatalysisazo dyeAcid Red 1INVESTIGATION OF TITANIUM-DIOXIDE COATINGS ON MEMBRANE FILTRATION PROPERTIESArticle