Zsigmond PAPP2024-10-172017-03-30C.A. Martínez-Huitle, E. Brillas, Applied Catalysis B: Environmental, 2009, 87, 105. S.H.S. Chan, T.Y. Wu, J.C. Juan, C.Y. Teh, Journal of Chemical Technology and Biotechnology, 2011, 86, 1130. S. Palit, Nature Environment and Pollution Technology, 2012, 11, 697. P.V. Kamat, Chemical Reviews, 1993, 93, 267. G. Rothenberger, J. Moser, M. Grätzel, N. Serpone, D.K. Sharma, Journal of the American Chemical Society, 1985, 107, 8054. P.V. Kamat, Journal of Physical Chemistry B, 2002, 106, 7729. P.V. Kamat, Pure and Applied Chemistry, 2002, 74, 1693. K. Rajeshwar, N.R. de Tacconi, C.R. Chenthamarakshan, Chemistry of Materials, 2001, 13, 2765. A.A. Ashkarran, Applied Physics A, 2012, 107, 401. P.-K. Chen, G.-J. Lee, S. Anandan, J.J. Wu, Materials Science and Engineering: B, 2012, 177, 190. C. Chen, Y. Lu, H. He, K. Wu, Z. Ye, Applied Physics A, 2013, 110, 47. J.W. Chiou, S.C. Ray, H.M. Tsai, C.W. Pao, F.Z. Chien, W.F. Pong, C.H. Tseng, J.J. Wu, M.-H. Tsai, C.-H. Chen, H.J. Lin, J.F. Lee, J.-H. Guo, Journal of Physical Chemistry C, 2011, 115, 2650. R. Georgekutty, M.K. Seery, S.C. Pillai, Journal of Physical Chemistry C, 2008, 112, 13563. C.A.K. Gouvêa, F. Wypych, S.G. Morales, N. Durán, P. Peralta-Zamora, Chemosphere, 2000, 40, 427. J. Kim, K. Yong, Journal of Nanoparticle Research, 2012, 14, art. No. 1033. Y. Lai, M. Meng, Y. Yu, Applied Catalysis B: Environmental, 2010, 100, 491. P. Li, Z. Wei, T. Wu, Q. Peng, Y. Li, Journal of the American Chemical Society, 2011, 133, 5660. G. Sinha, L.E. Depero, I. Alessandri, ACS Applied Materials & Interfaces, 2011, 3, 2557. L. Sun, D. Shao, Z. Song, C. Shan, Z. Zhang, B. Li, D. Shen, Journal of Colloid and Interface Science, 2011, 363, 175. T. Tan, Y. Li, Y. Liu, B. Wang, X. Song, E. Li, H. Wang, H. Yan, Materials Chemistry and Physics, 2008, 111, 305. K. Thongsuriwong, P. Amornpitoksuk, S. Suwanboon, Journal of Sol-Gel Science and Technology, 2012, 62, 304. J. Wang, X.M. Fan, Z.W. Zhou, K. Tian, Materials Science and Engineering: B, 2011, 176, 978. J. Wang, Q. Hu, Z. Li, J. Guo, Y. Li, Materials Letters, 2012, 79, 277. T.-J. Whang, M.-T. Hsieh, H.-H. Chen, Applied Surface Science, 2012, 258, 2796. J.-J. Wu, C.-H. Tseng, Applied Catalysis B: Environmental, 2006, 66, 51. F. Xiao, F. Wang, X. Fu, Y. Zheng, Journal of Materials Chemistry, 2012, 22, 2868. J. Xie, Q. Wu, Materials Letters, 2010, 64, 389. D. Zhang, F. Zeng, Research on Chemical Intermediates, 2010, 36, 1055. Y. Chen, D. Zeng, K. Zhang, A. Lu, L. Wang, D.-L. Peng, Nanoscale, 2014, 6, 874. Q. Huang, S. Liu, W. Wei, Q. Yan, C. Wu, RCS Advances, 2015, 5, 27075.1224-7154(online): 2065-9520http://dspace.chem.ubbcluj.ro:4000/handle/20.500.14637/50STUDIA UBB CHEMIA, LXII, 1, 2017 (p. 195-202), DOI:10.24193/subbchem.2017.1.17 Zsigmond PAPP Faculty of Biofarming, John Naisbitt University, Bačka Topola, Serbia. Email: zpap@naisbitt.edu.rs. https://orcid.org/0000-0002-9402-469XDifferent unmodified and modified semiconductor photocatalysts were used for the complete decolorization of an unbuffered crystal violet solution. The decolorization efficiency of commercially available ZnO and TiO2 (anatase nanopowder) was compared with those of newly prepared gold-modified ZnOs (Au/ZnOs). Two Au/ZnOs were prepared from pure ZnO powder through deposition of gold by direct current (DC) sputtering. The morphological characterization of the Au/ZnOs was done with the aid of scanning electron microscopy. ZnO-based catalysts show significantly higher decolorization power in comparison with TiO2. Au/ZnOs show slightly higher activity than unmodified ZnO.ensemiconductor oxidesmodification with goldsputter coatingphotodegradationcrystal violetUNMODIFIED AND GOLD-MODIFIED SEMICONDUCTOR CATALYSTS FOR SOLAR LIGHT ASSISTED PHOTODEGRADATION OF CRYSTAL VIOLETArticle